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Abstract-This paper offers a new method for measurement of thermal properties of solids which are 
subject to arbitrar), heating conditions. The method utilizes the Laplace transform and can be used for 
many geometries, but the primary case discussed here is that of a semi-infinite, homogeneous body. 
The calculations are relatively simple to perform with modern hand-held calculators, and the method 
can be utilized for determining thermal diffusivity when only temperatures are measured and for deter- 
mining both thermal conductivity and volumetric specific heat if, in addition, the surface heat flux 
is known. 

The method is applied to the measurement of thermal properties of asphaltic pavement using 
temperature measurements from actu',d service conditions. Unlike other methods, exact solutions based 
on steady periodic heating conditions are not required. Transient temperature measurements in asphalt 
pavement are analyzed for two outdoor locations in Michigan, and calculated thermal property values 

of asphaltic pavement are compared with those found by using nonlinear estimation. 

N O M E N C L A T U R E  

cp, specific heat at constant pressure [J/kg-K]; 
k, thermal conductivity [W/m-K]; 
m, number of Laplace transform parameter 

values used in equation (10); 
n, number of equal time divisions in equation 

(13b) and number of different experiments 
or thermocouples in equation (I0); 

q, heat flux [W/m2] • 
s, Laplace transform parameter [ s - l ] ;  
S, sum of squares function defined by 

equation (10); 
t, time Is]; 
T, temperature [K]: 
T', temperature increase above Ti, [K]; 
Ti,, initial temperature [K]; 
W~, weighting factor used in equation (10); 
x, distance from the heated surface [m]; 
x j, location of the jth thermocouple i-m]. 

Greek symbols 

:t, thermal diffusivity, k/pcp [mZ/s]; 
0, Laplace transform of T'(x, t) [Ks- 1 ];  
p, density fkg/m3]. 

I. I N T R O D U C T I O N  

THERE are many materials for which thermal properties 
are needed for naturally occurring heating conditions. 
Examples might include natural heating and cooling of 
soil and pavement: cryosurgery; and cooking, refriger- 

ation, and freezing of food. In some cases a simple 
method of analysis for thermal properties is required. 
This paper presents a method that is relatively simple 
to use and can utilize temperatures that result from 
in situ conditions. Important restrictions are that the 
temperature distribution be one-dimensional and that 
the thermal properties be considered temperature- 
independent for a given set of data. 

The method is general in that it can be employed 
for a variety of geometries, including finite plates, long 
cylinders, spheres, and infinite regions. In order to 
reduce the scope of the paper, however, only the semi- 
infinite homogeneous geometry is considered. To 
demonstrate the application of the method, data ob- 
tained from asphaltic pavement are analyzed. This 
serves to introduce some realistic problems, although 
the method has potential applications to many other 
situations as well. 

Measurement of the thermal properties of asphaltic 
pavement in its in situ condition is important because 
of the unknown effects of moisture and aging under 
service conditions. Also, properties of asphaltic pave- 
ment fluctuate because of the pavement's highly 
variable composition: hence, a method of analysis that 
would be appropriate for field use with actual pave- 
ments may be of interest. Incidentally, this might also 
apply to in situ measurements of thermal properties of 
permafrost in connection with Alaskan oil pipelines. 
Finally, a need for thermal property data on asphaltic 
pavement exists because a literature search [1] revealed 
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very limited data. particularl? for thermal properties 
as a function of temperature antt under natural 
conditions. 

The thermal properties of interest are thermal dif- 
fusivity, thermal conductivity, and volumetric specitic 
heat. The primary emphasis in this paper is upon 
thermal diffusivity, but methods for obtaining the 
others arc also discussed. 

A number of methods have been proposed for esti- 
mating thermal diffusivity from in .~itu data obtained 
from soil and pavement [1]. These methods frequently 
depend upon the assumption of steady periodic heat- 
ing, however. Though these techniques provide simple 
means of estimating diffusi~.ity, the variable character- 
istics of natural heating tend to invalidate the results 
of such methods. Another much more powerful pro- 
cedurc, sometimes called nonlinear or parameter 
estimation, could also be used [2, 3]. Because this 
method uses all the data in minimizing a sum of squarcs 
function, however, it is too complex for field use or 
for simple analysis. The nonlinear estimation technique 
is recommended whenever the greatest accuracy is 
required and whenever a digital computer is available. 
It should also be employed if there is uncertainty 
regarding the mathematical model. Since the presence 
of moisture or changing composition does introduce 
some uncertainty, results obtained using the proposed 
method are compared with those obtained using the 
nonlinear estimation method because the latter has a 
greater sensitivity to time-dependent changes. 

Neither peritxt-based methods nor the parameter 
estimation method can satisfy, the objective of this 
research, which is to provide a method for estimating 
the thermal properties of asphaltic pavement that will 
satisfy the following conditions for a one-dimensional. 
constant thermal property body: 

1. The method should permit the arbitrary heating 
conditions produced by nature: 

2. The geometry should be that of a thermally semi- 
infinite body: 

3. The method of analysis should be relatively 
simple: 

4. The method should permit the simultaneous esti- 
mation of all the properties, provided the energy 
input is known. 

demonstrate the validity of these assumptions for the 
data anal.',zcd. The results arc discussed further belong. 
Accepting these assumptions, the describing partial 
differential equation is the simple onc-dimcn,,i~m:d 
heat-conduction equation : 

~" T' 72 ./., 

where T'(.x. t} is defined to be the temperature differ- 
ence. 

T ' ( x .  t) ~ T(x. t ) -  T,,, 12) 

T is temperature and T,° is the initial tempcraturc, a 
constant value throughout the body. In t l 1, t is time. 
x is position, and 7 is thermal diffusivity. The surface 
temperature has an arbitrary time variation given b) 
Tolt}. The boundary and initial conditions are given b~ 

T'{0, t) = [TI0. tl - Tin] - 7;;(t) (3} 

T'(.x-, 0) -- [TI \-. (1} - 1;~] = 0 14) 

T'( z .  t) = [T( :r. t} - 7,~] = 0. 15) 

The first objective is to obtain an estimate of y. given 
To(t), T~,, and some additional temperature history for 
a location other than x = 0. 

Taking the Laplace transform of equations il}. {3}. 
(4) and (5) 

d2Lll  '') 
sLIT'}  = :~ 161 

dx 2 

L[ 7"10. t)] = l.t I;;1 (7a) 

L 1 7(  -s.. t)] = t) lTb) 

where s is the Laplace transform parameter in the 
integral 

L(z}= ~ - '  ze "dr. 17c) 

Solving the problem given by 16), (7a) and (7bl yields 

L[T'lx)] = LIT ,  j ) e x p [ -  (.,..":0' 2\.] (81 

which can be solved for 7 to lind the simple and 
attractive expression, 

3, \  .2 

: '  = In 1,1i- ;) i"  

2. SIMPLIFIED LAPLACE TRANSFORM M E T H O D  

The method to be developed was used by Bellman 
et al. [4.5] to estimate parameters in the wave equation 
c2u~,~ = u,,, where the subscripts represent derivatives. 
The parameters were ao and at in the function 
c = ao + at x. The investigators did not consider the 
heat-conduction equation nor use actual experimental 
data, however. 

Asphaltic pavement is neither homogeneous nor im- 
pervious to water. Furthermore, its thermal properties 
are not temperature-independent. Nevertheless, the 
assumptions of a semi-infinite, homogeneous, non- 
porous solid with temperature-independent properties 
are made in the analysis given below. The thermal 
properties obtained from both field and laboratory data 

This expression is valid for an) positive real value of,s. 
Because this fact is not obvious, it is demonstrated 
using Duhamel's Theorem in the Appendix. 

One can use (9) directly for estimating the thermal 
diffusivity by selecting a reasonable value for s. It is 
possible, however, to pick several reasonable values of.~ 
for the same experiment [4]: a range of s values is 
discussed below. Various similar experiments might 
also be performed for estimating :x. From all these data 
one might wish to estimate the "'best" value of the 
thermal diffusivity, but is difficult to definc the best 
criterion when the "observations" are the Laplace 
transforms of temperature differences containing 
errors. In this context, the "best" criterion would bc 
the one producing a minimum variance estimator that 
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is simultaneously relatively simple to evaluate. Unfor- 
tunately, these two conditions seem to be mutually 
exclusive. Since the emphasis in this paper is upon 
simplicity, the minimization of the sum of squares 
function 

S(~)= Z ~ Wci{:x- .s. ,c2,4nE[L,ITj) /L,(Td.. i ) ] }  2 (10) 
i=1 j = l  

is suggested where W~s is a weighting factor, i refers 
to the Laplace transform parameter s~, and j refers to 
different experiments or thermocouples. If nothing is 
known regarding the weighting factors before analyzing 
the data, then all the W~/s could be set equal to unity. 
The more accurate the expected results are for a given 
s~ value relative to another value s~. the greater [,V~ i 
would be compared to 14As. 

The thermal diffusivity is estimated from (10) by 
differentiating Skt) with respect to :t, setting the result 
equal to zero, and solving for the estimate ~t: 

~ .si.~.2"~s.'lnZ[L;{~'),';Li(T;.;)] 
~ = i = t j = z  (11) 

i x !  j = l  

Hence, to estimate :~ it is necessary to have measure- 
ments from at least two thermocouples, one at xo and 
another at xz; a measurement of the distance difference 
x ~ - x o ;  and a reasonable value of "'s". If there are 
measurements at only one interior location fin addition 
to xo) and only one s is chosen, then m = n = 1 and 
(11) reduces to (9). 

The temperature Tolt) can be completely arbitrary, 
and it is only necessary to evaluate the integral in the 
Laplace transform for the measurements at xo and x~. 

One important assumption in this method is that the 
initial temperature is uniform throughout the semi- 
infinite body. The lack of this uniformity necessitates 
the process of correcting the initial condition. Cor- 
rections for a nonuniform initial temperature can be 
made [3], but a uniform initial temperature can be 
approximated by choosing the starting time when this 
is true or by removing an insulating blanket just before 
the start of the test. 

3. LAPLACE T R A N S F O R M  CRITERIA 

The function exp( - s t )  for various values of "s" is 
plotted vs st and t in Fig. 1. For a periodic temperature 
variation T(x,t) with a constant value of T, the 
variation of T' = AT = T(x, t ) -  T~ is sinusoidal, as is 
shown in Fig. 2(a). It is observed that the magnitude 
o fexp( - s t )  shown in Fig. l(b), as well as the product 
A T e x p ( - s t )  shown in Fig. 2(b), decreases on the 
average with increasing values of st. For st > 6, the 
contribution of T' in (I 1) is usually insignificant since 
exp ( -6 )  is the small value of 0.0025. Therefore, real "s'" 
values should be chosen so that they are greater than 6 
divided by the maximum time, or 

s >/6/tmax (12) 

where tm=x is the maximum experiment duration. Note 
that this choice ofs  is in no way based on steady state 

261 

(a) 

s • O.05/h 

Time, h 

FtG. 1. Graphs of the exponential exp(-st). 

conditions. If only one s value is to be used, it is 
recommended that it be at approximately 6/tm~,. Addi- 
tional values up to 30/t,,.x are reasonable. Even larger 
values are theoretically possible but these values in 
effect use only the earliest temperature rises which have 
relatively low "signal to noise" ratios. See Fig. 2(b). 

lime, h 

~ l°l(b~,/-,-0.~ 

% I'o ~o ~ /o "~ 
Time, h 

FIG. 2. Graph of sin 7tt/12 and this function multiplied by 
exp(-st). 

There are several ways to evaluate the Laplace 
transform of arbitrary functions. One is to use elec- 
tronic integrated circuitry. Another is to evaluate the 
integral in the transform by using a summation, i.e. by 
using the trapezoidal or Simpson's rule 1"4]. The 
expression used herein to approximate the Laplace 
transform integral given by (7c) is a form of the 
trapezoidal rule given by 

L(z) .~ z i e - "+Zo/2  At (13a) 
[_i=! 

in which z is some function of t and z~ is z evaluated 
at ti. The region 0 to tm,~ is divided into uniform 
intervals of 

At = tm,,Jn, ti = iAt. (13b) 

The term at time tm,x is omitted in (13a) because the 
contribution would be small. It is necessary to make 
n large enough to get the desired accuracy; n = 10 is 
frequently satisfactory. 
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It is also important  to note that the l~aplace trans- 
form is e`"aluated numerically. No ftmctions are used 
to approximate z in (13a). rather numerical ,,alues of 
z at different times arc utilized. In particular, z is not 
approximated by functions of the form exp(At). ',','here 
A has a positive, real value. This is done for two reasons. 
First, Laplace transform pairs do not exist if the real 
part of ,s is less than ,4. Second. naturally occurring 
temperature histories do not groin exponentially with 
time for extended periods. 

4. DESCRIPTION OF ASPHAI,TI(" PAVE%lENT 

Asphaltic pavement may be considered as a system 
composed of solid, semisolid, or gaseous phases as well 
as moisture. The solid phase, also called aggregate. 
consists of sand, gravel, crushed stone, slag, and mineral 
filler. The semisolid phase is the viscoelastic asphaltic 
material produced from petroleum in a variety of types 
and grades ranging from a hard, brittle material to an 
almost water-thin liquid. The gaseous phase is the air 
which fills the voids. The aggregate is bound together 
by the asphaltic material, which may compose 5'~, by 
weight of the mixture. 

Asphaltic pavement is usually considered to have 
three "courses" wearing, binder and base. ] 'he  surface 
is provided by the wearing course, which is a well 
compacted, hot-rolled asphaltic mix. The base course 
may have a high ratio of voids. 

Water in either vapor or liquid phase enters the 
pavement through the voids. The presence of accessible 
pores, crevices, and capillary forces results in the 
penetration of water into the pores. The wearing course 
usually has a very low permeability to water, while 
water can easily penetrate in open-grade base mixtures. 

5. EXAMPI.E I/SING EXACT DATA 

To illustrate the procedure for estimating :~, con- 
sider the case of a semi-infinite body which has a step 
increase in temperature of T6: the temperature history 
is the well-known result of 

l"(x, t) = "/~; erfc [xl4~t 1- L., ]. (14) 

For  simplicity let Td be equal to 1. Let there be two 
thermocouples measuring temperature, one at x = 0 
and the other at x~, where .x-~ and :c are so chosen 
that  x~,.'~ is equal to l:'h. 

The temperature rise T' at x~. e -~', and T ' e  ~' is 
depicted in Fig. 3. Also, the running summation 
analogous to the sum inside the brackets of [13a) is 
given: this is for approximating the Laplace transform 
of the temperature at xs. The integral for x = 0 is 
evaluated exactly as 

T¢;[ e -~ 'd t  = [ 1 - e - ~ ' n ] .  
/ [) S 

In each case let s be the value of 2, which means that 
from(12) the maximum time considered can be about  3. 
Notice that the summation in Fig. 3 approaches a 
constant at this value. 

A running set of values of the thermal diffusivity 
is calculated using (9). with the integrals progressively 

approximating the Laplace transform by increasing 
the time values of the upper limits. For x =~ 1 m. the 

value calculated using the trapezoidal rulc until 
t = 3 h and with At = 0.25 is 1.(~,)27 In-' h.  or 0.27",. too 
large, t"igure 3 also shows the effect of shorter times 
on the 3~ value obtained. Note that the integral of the 
l"(x~, t )exp(- .s t )  function might appear  to Ix: somc- 
what crudely approximated with At as large as 0.25 
because the function changes shape so greatly tor small 
t ~ alues. However, if time steps as small as 0.05 arc 
t.sed, the error is only reduced to 0.09",, at t = 3 h. 

IC  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~. s "2  . . . . . . . . . . .  ~ 

c~b[ . / r'r,,.,j -7 .~  " ..... -c.~2 ,~ 
~ o . . _ o  . . . .  l 

, r ? ' .  2 , /  ~ . . . . . .  ~ummalio~ | 

! '  / U  ", . . . . .  , ; ~ ' , , ~  

F~(,. 3. Curves for example using data correct to fl)ur 
significant figures. 

If any other s value up to 10 is used rather  than 2, 
extremely accurate ~ values are still obtained. For even 
larger s values the accuracies tend to be poorer. This 
is because the approximate expression for the Laplace 
transform given by (13a) is inaccurate as the number  
of terms of z~exp(-sty) that are significantly different 
from zero approaches zero. See Fig. 2b. 

It is true that the method described in (9) and (13) 
is more tedious to implement than a simple algebraic 
equation. With a modern electronic calculator such ,as 
the Hewlet t -Packard 35, however, the calculations can 
be performed in just  a few minutes. If a programmable  
calculator is available, the solution can be obtained in 
about  the time that it takes to input the measured 
temperatures. In either case. evaluation of the thermal 
diffusivity can be achieved without utilizing a digital 
computcr.  

6. HEAT FLLX CONDITION 

If the heat flux is known as a function of time at 
x = 0, not only can the thermal diffusivity be found, 
but the thermal conductivity, k, and specific heat, cp, 
can also be found. Suppose the heat flux q(t) is known, 

CT 
q ( t ) = - k  • i 115) 

( " X  =x = O 

or, more precisely, assume that the Laplace transform 
of qlt) is known, 

/ 

L[q(s)] = [ e "q(t)dt .  (16) 
J 0 
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Taking the Laplace transform of (15) results in 

-keOI = L[q(t)], 0 = L[T'(x)] .  
& I~=o 

Using (8)in (17) yields 

kpG, = {L[q(t)]/Ool2(l/'s), Oo = L(Td). (18) 

Thus, if information regarding the temperature and 
heat flux in a semi-infinite body is available, the values 
of kpcp and ~t can be measured. If ct and kpcp are 
measured, the values of k and pcp can be obtained 
directly from 

k = [~(kp%)] L2 119) 

t '% = [kpc.'c~] ' 2  120t 

provided the density p is also known. 

7. EXPERIMENTAL RESULTS 

7.1. Laboratory data 

Several sets of experimental data were analyzed. One 
set was from laboratory tests on a cylindrical core 
specimen 7.62 cm in diameter and 3.81 cm thick. This 
specimen was prepared so as to be similar to the 
wearing and binding courses of the asphaltic pavement 
in the field tests. Two thermocouples were embedded 
in each of four planes below the heated surface. Tests 
of two minutes duration were run with the specimen 
at different initial temperatures from 239 to 322K 
( - 3 0  to 120"F). 

The specimen was heated (or cooled) by using a 
hydraulic system [6] to bring a 7.62cm dia copper 
calorimeter into good contact with it. The calorimeter 
was initially at a different temperature from the 
specimen. In Fig. 4, the calorimeter surface tempera- 
ture and the specimen temperature histories are shown 
for respective locations of 0.64, 1.27, 2.54 and 3.18 cm 
from the heated surface. Considering the inhomo- 
geneous composition of asphaltic pavement, it is 
remarkable that the thermocouple responses at each 
depth were as close as those shown in Fig. 4. Evidently 
the assumption of a homogeneous solid was reasonable 
in connection with the heat transfer. 
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The temperatures in the specimen and in the 
calorimeter were digitized from thermocouple signals 

(17) using an IBM 1800 computer. The transient tempera- 
tures in the calorimeter can be used to calculate the 
heat flux at its surface [7]. Even if there is a resistance 
to heat flow at the interface, the heat flux leaving the 
calorimeter must be the same as that entering the 
specimen at the common interface. 

The data from these laboratory tests have been 
analyzed in two different ways. The first is that detailed 
by this paper, i.e. computer calculations based on (9h 
(13), (18), (19), and 1201. The second is the nonlinear 
estimation method. 

A visual comparison of the two methods can be 
obtained through an examination of the results shown 
in Table 1. Note that the different methods give very 
similar values, with the differences being less than 
about + 5','4,. The average temperatures given in Table 1 
are the simple averages of highest and lowest tempera- 
tures measured in the cases of interest. 

Table 1. Comparison of thermal diffusivity of asphaltic 
pavement calculated from laboratory data using the 
Laplace transform and nonlinear estimation methods 

Thermal 
diffusivity x 10 6. 

(m2/s) 
Average 
temp., Laplace Nonlinear 

Case Condition (K) T. method est. 

1.1 dry 323 1.01 1.03 
1.2 dry 323 1.08 1.06 
1.3 dry 323 1.01 1.08 
1.4 dry 323 0.98 1.06 
2 dry 318.4 1.06 1.16 
3 dry 312 1.08 1.11 
4 dry 308.7 1.32 1.26 
5.1 dry 279 1.24 1.2 l 
5.2 wet 276.7 1.65 1.57 
5.3 dry 278.7 1.29 1.42 
6.1 dry 255.6 1.39 1.34 
6.2 wet 255.3 1.83 1.73 
6.3 dry 260.0 1.60 1.50 

3C5 • x - O . ~ ~  336 

Calorimeter surface temp. . 1 ~ "  3N 

2m 

; lb ~0 ~ ~o ¢o do ~o £322 
Time, s 

Fl•. 4. Measured temperature at the calorimeter surface and various depths of the laboratory specimen (solid and dashed 
lines refer to first and second thermocouple sets). 
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Another comparison is suggested by the average 
values given in the first two rows in Table 2, whcre 
thermal diffusivity results for the dry specimens at 255 
and 311 K are presented. These :t values were obtained 
using least squares, with ~t assumed linear in tempera- 
ture. The data used came from Table 1. At 255 K the 
Laplace method is 3.2",i, higher than the nonlinear 
estimation method: at 311 K it is 2.4% lower. 

Table 2. Summary of results for dr3= asphaltic pavement. 
wearing and binding courses 

Source of Method of 
data analysis 

Laboratory Nonlinear est. 
Laboratory Laplace trans. 
Field Nonlinear est. 
Field Laplace trans. 

Thermal 
diffusivi ty x 10 °. 

(m= sl 

~at255K ~at311K 
(0<:F)" I IO0 :F I  

1.44 1.15 
1.48 IA2 
1.51 1.2g 
1.56 1.20 

It is significant that results of the two methods agree 
so closely. The nonlinear estimation method provides 
a means of checking the model because differences of 
the calculated and measured values of temperature can 
be investigated for systematic deviations from test to 
test. The presence of such systematic effects would 
indicate an inadequacy in the model due to the presence 
of moisture, nonhomogeneity, etc. None was noted and 
thus the simple heat-conduction model given by (1) 
appears to be adequate for the conditions tested. 

7.2. Field data 

In situ temperature measurements made by other 
investigators were also analyzed. One set of data for 
18crn thick asphaltic pavement, came from Gratiot 
County, Michigan [8], and another set of data came 
from Bishop Airport, Flint, Michigan, [9] where the 
pavement is 48 cm thick. Figure 5 depicts some typical 
results for the airport location on a sunny day. Tem- 
perature histories are shown as deep as 107 cm in the 
underlying soil. 

and J. V. BfcK  

In ana l yz ing  da ta  such as tha t  shown  in Fig. 5. the 

initial time should be assumed to be when the tem- 
perature is relatively uniform, yet is followed b.~ rapkt 
changes in temperature. These conditions are satistied 
at about 8.(K) am. Because the temperature distribu- 
tion is not uniform at an)' timc. however, a correction 
for this condition should be applied [3]. 

Values of the thermal diffusivity calculated lot data 
from the two locations are shown in t"ig. 6. Data wcre 
uscd only for days having no precipitation. Moreover. 
only data corresponding to the upper pavemcnt levels 
(i.e. the wearing and binding courses) tire included. The 
t w o  m e t h o d s  o f  analys is  ( non l i nea r  es t ima t i on  and 

femperature of 
0 10 20 30 40 50 60 76 8,0 ~ lO0 

1.15 l_ , o, - - - -  10.07 
I • • :> nonlinear estimation I 

"~ " - 7 " - ?  . . . . . . . .  , °~" i l.e~ t L . o d ~ r ~ i o ~ - / "  . . . .  ~ /°°s 
i ~ n c e t c a n s -  ~ - % -  

1.0 L dalai form method ~ ~ 0.0d 
>_ (field dalai 3'~' 

I0.0 
[ o nonlinear estimation f e 

0.5 ~ • Laplace transform melh~ ] 0.02 

0 / ~ 0.01 
io 

Temoeralure. K 

Fl(;. 6. Calculated thermal diltusi',it)' of asphaltic concrete 
from field data using tv, o methods. 

Laplace transform) were used. Least squares lines 
through the data are shown, along with a dashed line 
which denoted the laboratory data analyzed using 
nonlinear estimation. These lines are described in 
Table 2 by the values at 255 and 3ILK. There are 
some differences in the ~ values due to the method of 
the calculation and the source of the data. The tield 
data, for example, is as much as 8'!, larger than the 
laboratory data. (This could bc due to the presence of 
moisture or the effects of aging.) The differences in the 
average values displayed in Table 2 for a given tem- 
perature are quite small, however, compared to the 
range of the individual z~ values given in Table 1 of 
in Fig. 6. For example, in Table 2 at 255 K there is 

3zo Surface = ~ i lip 

/,'/'" 1 ,  3o.5cm ~ - / r40.3cm " - , .>~;  ¢u 

- -  " . . . . .  ~ 7 0  

= 60 

AM DM 
lime, h 

FIG. 5. Full-depth asphaltic pavement temperature during a sunny summer da). 
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about a + 16% variation near 265 K. Hence, from these 
variations and also from an inspection of Fig. 6, any 
set of values given in a row in Table 2 might be 
used. Since the laboratory data are more consistent 
than the field data and since the nonlinear estimation 
values should be more accurate, the recommended 
values are those given by the dashed line in Fig. 6, 
which is described by the first row of Table 2. For 
convenience, these values are repeated in the recom- 
mended values in Table 3. 

Table 3. Recommended thermal properties for dry 
asphaltic pavement 

Temperature 

255K 311 K 
(0°F) (100°F) 

~t, mZ..'s 1.44 x 10 -6 1.15 X 10 -6  

~t, ft 2/h 0.056 0.045 
k, W/re. K 2.88 2.28 
k, Btu,.qa ft - F 1.66 1.31 
pcp, J/m 3. K 2.00 x 106 1.97 x 106 
pep, Btu/ft ~. F 29.8 29.4 

The field data were also analyzed to obtain average 
thermal diffusivity values representing all the courses, 
i.e. wearing, binding, and base. On the average, the 
values were only about 3% less than the corresponding 
values for just the upper two courses. This is a 
negligible difference. 

In both the field and laboratory data the "wet" 
pavement gave consistently higher values. For the 
laboratory data both tests gave close to 20% increase, 
while the field data had about 15% increase. Based on 
the limited data at hand, it seems that a 20% increase 
over the dry values is indicated. It is felt that this 
increase is mainly a result of filling the voids in the 
pavement, thereby reducing the resistance to heat flow. 
Since the wearing course, in particular, is well- 
compacted, the migration of moisture would be slow 
and thus would not be the dominant mode for the 
increase in heat transfer. The increase is probably due 
to greater conduction resulting from water rather than 
air being in the voids. 

8. RECOMMENDED VALUES FOR DRY 
ASPHALTIC PAVEMENT 

Based on the results discussed above, some recom- 
mended values of thermal diffusivity, thermal conduc- 
tivity, and a density- specific heat product are given in 
Table 3. These values are for the wearing and binding 
courses of dry asphaltic pavement. The recommended 
values of • and k are within +20% of most of the 
data. The pCp product agrees to _+ 8% of all the data. 
These results are appropriate for the materials investi- 
gated, but due to the variability of the natural com- 
ponents different values might be found for other cases. 
Hence a rapid method for the measurement of proper- 
ties may be needed. 

It is important to point out that the values of 
and k are considerably higher (by a factor of almost 
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two) than those used by some other investigators. If 
the low values are used, calculations of frost depth will 
indicate considerably less penetration than is actually 
present, if the true property values are actually the 
larger values contained herein. 

9. COMPARISON WITH LITERATURE VALUES 

There is relatively good agreement in the literature 
on the specific heat and density of asphaltic pavement. 
The values used in [10, 11] are cp = 921J/kg.K and 
p = 2242 kg,'m 3, which has a pep product of 2.07 × 
106 J/m 3. K. This is only 5% less than the 311 K (100°F) 
value given in Table 3. 

The reported thermal conductivity values are con- 
siderably more variable than p and c~. In [10, 11] a 
value of thermal conductivity of 1.2 W/m. K was used. 
This was primarily intended to be a typical value valid 
for application of hot-mix layers starting at about 
422K and then cooling to 353 K. Though the value 
for k given in Table 3 is 2.28W/m-K at 311K, it 
decreases to 1.2 at 408 K (if linear extrapolation is 
permitted). Many other references could be cited, in- 
cluding Aldrich [9], who used a value of 1.5 W/m. K; 
Saal [12], who gave 2.23W/m. K; and O'Blenis [13], 
whose values varied from 0.85 to 2.32 W/m. K. 

Given the above values of thermal conductivity and 
pcp, the thermal diffusivity can be calculated and con- 
siderable variation can again be expected. Corlew and 
Dickson [10, 1 I] used a value for ~ of 5.86 x 10- 7 m2/s, 
which is about half of that recommended herein for 
311 K. They also show reasonable agreement between 
some experimental temperature measurements and cal- 
culated temperatures using this value. In [10], most of 
the comparisons show temperatures above 339K. 
Using the Laplace transform with their data also 
corroborates their c~ value. 

Consideration of the components of asphaltic pave- 
ment suggests that the variation in the above values 
may not be unreasonable. For example, one possible 
type of rock to be used in the aggregate is limestone; 
in units of W/m.K the thermal conductivity is 
reported to be 2.1 at 273K [14], 0.7 at 294K [15], 
and 1.2 at 372K [16]. The corresponding values for 
the first two references of the thermal diffusivity are 
4.4 x 10 - 7  and 8.3 × 10-Tm2/s. The thermal conduc- 
tivity of granite, another possible component of the 
aggregate, is given by 2.8 at 273 K in [14], between 
1.7 and 4.0 in [17] where no temperature is given, and 
between 3.1 and 4.2 by Gebhart [16] (units of 
W/m. K are used in each case). It is realistic to assume 
that the disparate values cited are, to a large degree, 
due to the variability of the materials themselves. 

Literature values for the asphalt's conductivity also 
vary from 0.16 to 0.76W/m. K [12]. The latter value 
is 20% larger than that of water at 311 K. 

10. SUMMARY AND CONCLUSIONS 

A new method for measuring thermal properties is 
derived and illustrated through the use of analytical 
and experimental data. The method is straightforward, 
uses a minimum number of assumptions, is applicable 
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tO semi-infinite solids, and can be applied to in .~itu 
data.  Both the thermal  c o n d u c t M t y  and the volumetr ic  
specific heat can be found if the Laplace t ransform of 
the surface heat llux can be ex.aluated. 

New thermal  proper ty  values for asphal t ic  pavement  
are given. Three  different sets of da ta  were analyzed 

two from in situ da ta  in Michigan and one  from 

labora tory  da ta  and r e c o m m e n d e d  thermal  proper ty  
values for asphal t ic  pavement  are given based on these 
data.  O the r  l i terature values exist for comparab le  

values of  thermal  conduct ivi ty  and thermal  diffusMty.  
a l though most  l i terature values tend to be lower. It is 
suggested that the scat ter  in the l i terature values may 
be due in part  to the variable compos i t ion  of  the 
materials,  a,s well as to the var iat ions in natural  
materials  themselves.  
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AI'PENDIX 
Veritwation o/the Indepcndemc ql t:ql, , ion (9) o/tlu, ~ l"uhw 

This Appendix is given because it is not obvious that 19) 
is independent of the s value chosen. For an arbitrary tem- 
perature history at the surface of a homogeneous, constant 
property semi-infinite body, the temperature rise at a point 
x is given by Duhamel's Theorem [18] as 

.', /~ .\-, t - ,~.) 
T'(x,t) = I 'E;(,,;.) ........ d). qA.l) 

where T~,(t)is the given surface temperature and ~bix, t) is 
the temperature response at x due to a unit step surface 
temperature rise. 

Taking the Laplace transform of (A I) gives 

LIT'Ix.  t)] = l,(Td)L[&j~lx, t).&]. (A.2) 

The derivative 34','& is the derivative ol 1141 with T~; set 
equal to unity; the result is 

,"4'(x, t) x i -~2 \ 
= ~ 4:~ ) (A.3) =-, t tl4~tt)l. 2 exp - t 

which has the Laplace transform of 

L[gO(x. tl.&] = e x p [ - x l s . ~ )  ~ -'] IA.4) 

(see p. 446 of [18]). Then e',aluating the denominator of (9) 
gives 

LIE(x)]  Ii n Ll/ ;)exp[-. , :(s . .a) '  z]{-' 
In2 I,(T£) - ) I ~ ( T d )  (A.5) 

= [-~ls..zt)'  2]2 = ~;-'~:t (A.6) 

which when introduced into (9) yields =. Notice that the 
s and x 2 values cancel in (9). 

ESTIMATION DES PROPRIETES THERMIQUES PAR LA TRANSFORMATION DE 
LAPLACE, AVEC APPLICATION AUX REVETEMENTS ASPHALT1QUES 

Resume--.L'article propose une nouvelle m6thode de mesure des proprietes thermiques de solides soumis 
a des conditions de chauffage arbitraires. La m~thode s'appuie sur la transformation de Laplace et peut 
~tre utilis~e pour diff~rentes geom6tries, mais le cas 6tudi6 iciest celui d'un solide semi-infini et homog6ne. 
Les calculs sont suffisamment simples pour 6tre faits sur des calculatrices de poche et la m6thode peut &re 
utilis~e pour d6terminer la diffusivit~ thermique quand les temp6ratures sont mesurees et aussi a la lois la 
conductivit~ thermique et la chaleur sp~zifique quand, en plus, est connu le flux thermique '5. la surface. 

Le m6thode est appl iqu~ fi la d6termination des propri6t6s thermiques des rev&ements asphahiques 
par la mesure de temp+rature dans les conditions reelles d'utilisation. Contrairement a d'autres methodes. 
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des solutions exactes basees sur des conditions de chauffage periodiques et 6tablies ne sont pas n6cessaires. 
On analyse des mesures de temp6ratures transitoires dans un rev&ement asphaltique pour deux situations 
ext6rieures en Michigan et les propri6t6s thermiques calcul6es sont compar6es h celles trouv6es par 

estimation non lin6aire. 
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DIE A B S C H ~ T Z U N G  T HE RMISCHER S T O F F E I G E N S C H A F T E N  
UNT E R  V E R W E N D U N G  DER L A P L A C E - T R A N S F O R M A T I O N  MIT 

SPEZIELLER A N W E N D U N G  AUF ASPHALT-STRASSENBEL/~GE 

Zusammenfassung - Es wird eine neue Methode zur Messung der thermischen Stoffeigenschaften von 
Festk6rpern, welche beliebigen Beheizungsbedingungen unterworfen sind, vorgeschlagen. Die Methode 
verwendet die Laplace-Transformation und kann auf viele Geometrien angewandt werden ; der wichtigste, 
hier diskutierte Fall ist der des halbunendlichen, homogenen K6rpers. Die Berechnungen sind relativ 
einfach mit modernen Taschencomputern durchzuffihren. Die Methode kann zur Best immung der 
Temperaturleitzahl verwendet werden, wenn nur Temperaturen gemessen werden: ist zus//tzlich der 
Oberfl//chenw~/rmestrom bekannt, dann k6nnen auch die W~irmeleitf~/higkeit und die isochore spezifische 
Wfirmekapazitfit bestimmt werden. Unter Verwendung yon Temperaturmessungen unter tats//chlichen 
Betriebsbedingungen wird die Methode zur Messung thermischer Stoffwertc yon Asphalt-StraBenbel//gen 
angewandt. Im Gegensatz zu anderen Methoden sind dabei keine exakten L6sungen aufgrund station//rer, 
periodischer Heizbedingungen erforderlich. Instation'/ire Temperaturmessungen in Asphal t -S t ra~n-  
bel//gen in zwei Orten in Michigan werden ausgewertct, die berechneten thermischen Stoffwerte werden 

mit denjenigen verglichen, die mit Hilfe nichtlinearer Absch'~tzungsverfahren ermittelt worden sind. 

HCHO.r lS3OBAHIdE H P E O B P A 3 O B A H H . q  fIAI-I : IACA ,3,J'13I OIXEHKH 
TEIUIOq)FI3FIqECKFIX CBOIYICTB AC@AJ]bTA 

AmloTmBm - -  l - l p e , ~ q o x e H  HOBblfl MeTO21 H3MepeHH,~I TenJlOBbIX CBOI~CTB TBep.~blX Tf,r[, He 3aBHC~II.IJ.H~[ 

OT ycaoaHtt aarpeea nccne~yeMoro TeJm. MeTo~nra  onpe~eaeana  3THX CBO~CTB 6a3apyeTca Ha 
HCnOJ]b3OBaHHH npeo6pa30BaHHoro no I l anaacy  ypaaneaaa  Ten.aonpoeoaaocTa M s  nony6ecgoHeq- 
HOFO O~HOpO~HOFO TeJia.  PacqeTHaa OopMyJ~a OTHOCHTe.qbHO npocTa a pacqeT CBO~CTB M O X e T  

6blTb npoeeaea pyqHblMH BblqHC.rIHTe.rlbHblMH cpe~CTBaMH,  3TOT MeTO~ MOXeT ~blTb HCHO2163OBaH 

~]~a onpelleJ]eHHa TeMnepaTyponpoaollnOCTtt, ecna tl3BeCTHa TeMnepaTypa, t~ ~tna onpe~eneu]aa 
TelIJIoIIpOBO,~LHOCTH H TeHJ]OCMKOCTit n p H  nOCTO$1HHOM 06beMe, ecDn H3BeCTeH TeI'IJ'IOBOI~ HOTOK. 

MeTO~ npnMen~eTCS ~ a  H3MepeHH:q Ten.qoqbH3iiqecJ~Hx CBOflCTB ac~ba~bTa e 3aBHCHMOCTH OT TeM- 
nepaTypbl. B OTJ1gtlHe OT ~pyrHX MeTOI]OB B ~RHHOM c~yqae ne rpe6yeTca HMeTb TOqHble peIIJeHH$/ 

ypRBHeHH.q TeIIJIOHpOBO~]HOCTH npH yC~OBHSX cTaHnonapHoro nepHo~HqecKoro Harpena. AHa~H3n- 
py~orc~ CBOttCTea ac~baJIbTOB ~ByX pal~OHOB MHqHFaHa, rlOJlyqeHHble HeCTaIIHoHapHblM MeTO~OM, 
p a c q e T H b l e  3HaqeHHg 9THX CBO~CTB cpaBHHaalOTC~ C ~aHHblMH, rlO.qy~ICHHblMH Ha OCHOBe He.rlHHe~HOI~ 

MeTO~HKH. 
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