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Abstract - This paper offers a new method for measurement of thermal properties of solids which are
subject to arbitrary heating conditions. The method utilizes the Laplace transform and can be used for
many geometries, but the primary case discussed here is that of a semi-infinite, homogeneous body.
The calculations are relatively simple to perform with modern hand-held calculators, and the method
can be utilized for determining thermal diffusivity when only temperatures are measured and for deter-
mining both thermal conductivity and volumetric specific heat if. in addition, the surface heat flux
is known.

The method is applied to the measurement of thermal properties of asphaltic pavement using
temperature measurements from actual service conditions. Unlike other methods, exact solutions based
on steady periodic heating conditions are not required. Transient temperature measurements in asphalt
pavement are analyzed for two outdoor locations in Michigan, and calculated thermal property values

of asphaltic pavement are compared with those found by using nonlinear estimation.

NOMENCLATURE

c,,  specific heat at constant pressure [J/kg-K];
k, thermal conductivity [W/m-K];

ation, and freezing of food. In some cases a simple
method of analysis for thermal properties is required.
This paper presents a method that is relatively simple

m, number of Laplace transform parameter to use and can utilize temperatures that result from
values used in equation (10); in situ conditions. Important restrictions are that the
n, number of equal time divisions in equation temperature distribution be one-dimensional and that

the thermal properties be considered temperature-
independent for a given set of data.
The method is general in that it can be employed

(13b) and number of different experiments
or thermocouples in equation (10);
q. heat flux [W/m?]:

s, Laplace transform parameter [s~']; for a variety of geometries, including finite plates, long
S, sum of squares function defined by cylinders, spheres, and infinite regions. In order to

equation (10); reduce the scope of the paper, however, only the semi-
I3 time [s]; infinite homogeneous geometry is considered. To
T, temperature [K]: demonstrate the application of the method, data ob-
T, temperature increase above T;, [K]; tained from asphaltic pavement are analyzed. This
Tin»  initial temperature [K]; serves to introduce some realistic problems, although
W,;,  weighting factor used in equation (10); the method has potential applications to many other

situations as well.

Measurement of the thermal properties of asphaltic
pavement in its in situ condition is important because
of the unknown effects of moisture and aging under
service conditions. Also, properties of asphaltic pave-
ment fluctuate becausc of the pavement’s highly
variable composition: hence, a method of analysis that
would be appropriate for field use with actual pave-
ments may be of interest. Incidentally, this might also

X, distance from the heated surface [m];
xj,  location of the jth thermocouple [m].

Greek symbols

a, thermal diffusivity, k/pc, [m?/s];
6. Laplace transform of T'(x, ¢) [Ks™'];
P density [kg/m?].

1. INTRODUCTION

THERE are many materials for which thermal properties
are needed for naturally occurring heating conditions.
Examples might include natural heating and cooling of
soil and pavement: cryosurgery; and cooking, refriger-
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apply to in situ measurements of thermal properties of
permafrost in connection with Alaskan oil pipelines.
Finally, a need for thermal property data on asphaltic
pavement exists because a literature search [1] revealed
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very limited data. particularly for thermal properties
as a function of temperature and under natural
conditions.

The thermal properties of interest are thermal dif-
fusivity. thermal conductivity. and volumetric specific
heat. The primary emphasis in this paper is upon
thermal diffusivity. but methods for obtaining the
others are also discussed.

A number of methods have been proposed for esti-
mating thermal diffusivity from in situ data obtained
from soil and pavement [1]. These methods frequently
depend upon the assumption of steady periodic heat-
ing, however. Though these techniques provide simple
mecans of estimating diffusivity. the variable character-
istics of natural heating tend to invalidate the results
of such methods. Another much more powerful pro-
cedure, sometimes called nonlinear or parameter
estimation, could also be used [2.3]. Because this
method uses all the data in minimizing a sum of squares
function. however, it is too complex for field use or
for simple analysis. The nonlinear estimation technique
is recommended whenever the greatest accuracy is
required and whenever a digital computer is available.
It should also be employed if there is uncertainty
regarding the mathematical model. Since the presence
of moisture or changing composition does introduce
some uncertainty. results obtained using the proposed
method are compared with those obtained using the
nonlinear estimation method because the latter has a
greater sensitivity to time-dependent changes.

Neither period-based methods nor the parameter
estimation method can satisly the objective of this
research. which is to provide a method for estimating
the thermal propertics of asphaltic pavement that will
satisfy the following conditions for a one-dimensional.
constant thermal property body:

1. The method should permit the arbitrary heating

conditions produced by nature:

. The geometry should be that of a thermally semi-
infinite body:
3. The method of analysis should be relatively
simple:
4. The method should permit the simultaneous esti-
mation of all the propertics. provided the energy
input is known.

|51

2. SIMPLIFIED LAPLACE TRANSFORM METHOD

The method to be developed was used by Bellman
et al.[4.5] to estimate parameters in the wave equation
¢*u,. = u,, where the subscripts represent derivatives.
The parameters were ao and «, in the function
¢ = ao+a,x. The investigators did not consider the
heat-conduction equation nor use actual experimental
data, however.

Asphaltic pavement is neither homogeneous nor im-
pervious to water. Furthermore, its thermal properties
are not temperature-independent. Nevertheless, the
assumptions of a semi-infinite, homogeneous, non-
porous solid with temperature-independent properties
arc made in the analysis given below. The thermal
properties obtained from both field and laboratory data
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demonstrate the validity of these assumptions for the
data analyzed. The results are discussed further below.
Aceepting these assumptions. the describing partial
differential equation is the simple one-dimensional
heat-conduction equation:

A

LT, th
where T'(x.r} is defined to be the temperature differ-
ence.

Tix.t)=Twx.0)=T,, (2)

T is temperature and T, 1s the initial temperature. a
constant value throughout the body. In (1) 1 is time,
X 1s position. and x is thermal diffusivity. The surface
temperature has an arbitrary time variation given by
To(1). The boundary and inmitial conditions are given by
T0.0=[TH0.0-T,] = To (3
Ti(x.0) = [_'I"(.\'. 0y - 'I"m'] =0 4)
Tx.n=[T(r.00=-T,]=0. (5
The first objective is to obtain an estimate of x given
To(1), Tin and some additional temperature history for
a location other than x = 0.
Taking the Laplace transform of equations (1). (3).
(4) and (5)

o dtun)
ST =z , (6)
dx*
LET0.0} = L(T5) {7a)
LITts.0]=0 (7b)

where s is the Laplace transform paramecter in the
integral

a
i

L{z) = | ze¢ Mdr. {7¢)
0

Solving the problem given by (6). (7a) and (7b) vields
L[T(x)] = L T)exp[ — (s *x (8)

which can be solved for x to tind the simpie and
attractive expression.

sX
“"mﬂurununn' o
This expression is valid for any positive real value of s,
Because this fact is not obvious. it is demonstrated
using Duhamel’s Theorem in the Appendix.

One can use (9) directly for estimating the thermal
diffusivity by selecting a reasonable value for s. It is
possible, however, to pick several reasonable values of s
for the same experiment [4]: a range of s values is
discussed below. Various similar experiments might
also be performed for estimating x. From all thesc data
onc might wish to estimate the “best™ value of the
thermal diffusivity, but is difficult to define the best
criterion when the “observations™ are the Laplace
transforms of temperature differences containing
errors. In this context, the “best™ criterion would be
the one producing a minimum variance estimator that
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Is simultaneously relatively simple to evaluate. Unfor-
tunately, these two conditions seem to be mutually
exclusive. Since the emphasis in this paper is upon
simplicity, the minimization of the sum of squares
function

s £ £ m

is suggested where W; is a weighting factor, i refers
to the Laplace transform parameter s;, and j refers to
different experiments or thermocouples. If nothing is
known regarding the weighting factors before analyzing
the data, then all the W;’s could be sct equal to unity.
The more accurate the expected results are for a given
s; value relative to another value s;. the greater Wj;
would be compared to W;.

The thermal diffusivity is estimated from (10) by
differentiating S(x) with respect to «, setting the result
equal to 7ero dnd solving for the estimate «:

Z Z sixFWAn [LA T Li( Ts )]
P
n
LW
Hence, to estimate x it is necessary to have measure-
ments from at least two thermocouples, one at x, and
another at x; a measurement of the distance difference
X;—Xo; and a reasonable value of “s™. If there are
measurements at only one interior locatlon (in addition
to xo) and only one s is chosen, then m=n=1 and
(11) reduces to (9).

The temperature Ty(f) can be completely arbitrary,
and it is only necessary to evaluate the integral in the
Laplace transform for the measurements at xo and x;.

One important assumption in this method is that the
initial temperature is uniform throughout the semi-
infinite body. The lack of this uniformity necessitates
the process of correcting the initial condition. Cor-
rections for a nonuniform initial temperature can be
made [3], but a uniform initial temperature can be
approximated by choosing the starting time when this

is true or by removing an insulating blanket just before
the start of the test.

{a—sixjAn? [LATVLAT5 )]} (10)

A=

(11

\Mg

3. LAPLACE TRANSFORM CRITERIA

The function exp(—st) for various values of “s” i
plotted vs st and ¢ in Fig. 1. For a periodic temperature
variation T(x,t) with a constant value of T;, the
variation of T' = AT = T(x, t)—T; is sinusoidal, as is
shown in Fig. 2(a). It is observed that the magnitude
of exp(—st) shown in Fig. 1(b), as well as the product
AT exp(—st) shown in Fig. 2(b), decreases on the
average with increasing values of st. For st > 6, the
contribution of 7" in (11) is usually insignificant since
exp{— 6) is the small value of 0.0025. Therefore, real “s”
values should be chosen so that they are greater than 6
divided by the maximum time, or

(12)

where tn,, 1s the maximum experiment duration. Note
that this choice of s is in no way based on steady state

$ 2 6/1max
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Exp (-st) .
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%
FiG. 1. Graphs of the exponential exp( —st).

conditions. If only one s value is to be used, it is
recommended that it be at approximately 6/t,,,,. Addi-
tional values up to 30/tm., are reasonable. Even larger
values are theoretically possible but these values in
effect use only the earliest temperature rises which have
relatively low “signal to noise” ratios. See Fig. 2(b).

15%(a)

X
Time, h

Time, h

F1G. 2. Graph of sin nt/12 and this function multiplied by

exp(—st).

There are several ways to evaluate the Laplace
transform of arbitrary functions. One is to use elec-
tronic integrated circuitry. Another is to evaluate the
integral in the transform by using a summation, i.e. by
using the trapezoidal or Simpson’s rule [4]. The
expression used herein to approximate the Laplace
transform integral given by (7¢) is a form of the
trapezoidal rule given by

a—-1
Liz) = [ Y zie s+ zo/Z]At (13a)
i=1
in which z is some function of ¢ and z; is z evaluated
at ;. The region 0 to tn,, is divided into uniform
intervals of

At = tma/n, 1 = iAL. (13b)

The term at time t,,,, is omitted in (13a) because the
contribution would be small. It is necessary to make
n large enough to get the desired accuracy; n =10 is
frequently satisfactory.
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It 1s also important to note that the Laplace trans-
form is evaluated numerically. No functions are used
to approximate = in (13a). rather numerical values of
= at different times are utilized. In particular, - is not
approximated by functions of the form exp(Ar). where
A has a positive. real value. This is done for two reasons.
First. Laplace transform pairs do not exist if the real
part of s 15 less than 4. Second. naturally occurring
temperature histories do not grow exponentially with
time for extended periods.

4. DESCRIPTION OF ASPHALTIC PAVEMENT

Asphaltic pavement may be considered as a system
composed of solid. semisolid. or gaseous phases as well
as moisture. The solid phase, also called aggregate.
consists of sand. gravel, crushed stone, slag. and mineral
filler. The semisolid phase is the viscoclastic asphaltic
matertal produced from petroleum in a variety of types
and grades ranging from a hard, brittle material to an
almost water-thin liquid. The gaseous phasc is the air
which fills the voids. The aggregate is bound together
by the asphaltic material. which may compose 5%, by
weight of the mixture.

Asphaltic pavement is usually considered to have
three "courses™ - wearing, binder and base. The surface
is provided by the wearing course, which is a well
compacted. hot-rolled asphaltic mix. The base course
may have a high ratio of voids.

Water in either vapor or liquid phase enters the
pavement through the voids. The presence of accessible
pores, crevices, and capillary forces results in the
penetration of water into the pores. The wearing course
usually has a verv low permeability to water. while
water can easily penetrate in open-grade base mixtures.

S. EXAMPLE USING EXACT DATA
To illustrate the procedure for estimating «, con-
sider the case of a semi-infinite body which has a step
increase in temperature of Ty: the temperature history
is the well-known result of

76, 1) = Tyerfe[x(dat) ™12 ]. (14)

For simplicity let Ty be equal to 1. Let there be two
thermocouples measuring temperature, one at x = ()
and the other at x,. where x, and x are so chosen
that x?/a is equal to 1h.

The temperature rise 7" at x,. e™* and T'e * is
depicted in Fig. 3. Also, the running summation
analogous to the sum inside the brackets of (13a) is
given: this is for approximating the Laplace transform
of the temperature at x;. The integral for x =0 is
evaluated exactly as

~

o
T

Jo

p—

1
e dr="° [1
A

at

—e vn].

In each case let s be the value of 2, which means that
from (12) the maximum time considered can be about 3.
Notice that the summation in Fig. 3 approaches a
constant at this value.

A running set of values of the thermal diffusivity «
is calculated using (9). with the integrals progressively
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approximating the Laplace transform by increasing
the time values of the upper limits. For x = 1 m. the
a2 value calculated using the trapezoidal rule until
{ = 3hand with Ar = 0.25is 1.0027m? 'h, or 0.27",, too
large. Figure 3 also shows the effect of shorter times
on the x value obtained. Note that the integral of the
T'(xy. nexpt—st) function might appear to be some-
what crudely approximated with Ar as large as 0.28
because the function changes shape so greatly for small
¢ values. However. if time steps as small as 0.05 are
used. the error is only reduced 10 0.09°, at ¢ == 3h.
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Fia. 3. Curves for example using data correct 1o four
significant figures.

If any other s value up to 10 is used rather than 2,
extremely accurate o values are still obtained. For even
larger s values the accuracies tend to be poorer. This
is because the approximate expression for the Laplace
transform given by (13a) is inaccurate as the number
of terms of z;exp(—si;) that are significantly different
from zero approaches zero. Sec Fig. 2b.

It 1s true that the method described in (9) and (13)
is more tedious to implement than a simple algebraic
equation. With a modern clectronic calculator such as
the Hewlett—Packard 35, however. the calculations can
be performed in just a few minutes. If a programmable
calculator 1s available. the solution can be obtained in
about the time that it takes to input the mecasured
temperatures. In either case. evaluation of the thermal
diffusivity can be achieved without utilizing a digital
computer.

6. HEAT FLUX CONDITION

If the heat flux is known as a function of time at
x =0, not only can the thermal diffusivity be found.
but the thermal conductivity, &, and specific heat. c¢,.
can also be found. Suppose the heat flux g(r) is known,

(T .
gty= ~k . |
(X ‘yz0

(15)

or, more precisely, assume that the Laplace transform
of 4(t) is known,

-
‘

L[q(s)]=J e “q(n)dr. (16)
0
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Taking the Laplace transform of (15) results in
oo

~k=—| =L[q]. 8=L[T(X).
X

x=0

(17)

Using (8) in (17) yields
koc, = {L[q()]/06}*(1}s5), 8o = L(Ty).

Thus, if information regarding the temperature and
heat flux in a semi-infinite body is available, the values
of kpc, and x can be measured. If « and kpe, are
measured, the values of k and pc, can be obtained
directly from

(18)

k = [alkpe,)]?
pcp = [kpepia]t 2.
provided the density p is also known.

(19)
(20)

7. EXPERIMENTAL RESULTS

7.1. Laboratory datu

Several sets of experimental data were analyzed. One
set was from laboratory tests on a cylindrical core
specimen 7.62 cm in diameter and 3.81 cm thick. This
specimen was prepared so as to be similar to the
wearing and binding courses of the asphaltic pavement
in the field tests. Two thermocouples were embedded
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The temperatures in the specimen and in the
calorimeter were digitized from thermocouple signals
using an IBM 1800 computer. The transient tempera-
tures in the calorimeter can be used to calculate the
heat flux at its surface [7]. Even if there is a resistance
to heat flow at the interface, the heat flux leaving the
calorimeter must be the same as that entering the
specimen at the common interface.

The data from these laboratory tests have been
analyzed in two different ways. The first is that detailed
by this paper, i.c. computer calculations based on (9),
(13), (18). (19), and (20). The second is the nonlincar
estimation method.

A visual comparison of the two methods can be
obtained through an examination of the results shown
in Table 1. Note that the different methods give very
similar values, with the differences being less than
about + 5%, The average temperatures given in Table t
are the simple averages of highest and lowest tempera-
tures measured in the cases of interest.

Table 1. Comparison of thermal diffusivity of asphaltic
pavement calculated from laboratory data using the
Laplace transform and nonlinear estimation methods

in each of four planes below the heated surface. Tests Thermal
. : . . diffusivity x 108,
of two minutes duration were run with the specimen (m?’s)
at different initial temperatures from 239 to 322K Average — - —— v
(—30to 120°F). temp., Laplace ~ Nonlinear
The specimen was heated (or cooled) by using a Case  Condition {K) T. method est.
hydraulic system (6] to bring a 7.62cm dia copper —— — —— T T T T T T
ydraulic system (6] gal opPer dry 323 101 103
calorimeter into good contact with it. The calorimeter 12 dry 323 1.08 1.06
was initially at a different temperature from the 1.3 dry 323 101 108
specimen. In Fig. 4, the calorimeter surface tempera- 1.4 dry 323 0.98 1.06
ture and the specimen temperature histories are shown 2 dry 3184 1.06 1.16
for respective locations of 0.64, 1.27, 2.54 and 3.18 cm i g:y g(l)é . igg Hé
from the heated surface. Considering the inhomo- 5, dr;l. 279 124 121
geneous composition of asphaltic pavement, it is 5.2 wet 276.7 1.65 1.57
remarkable that the thermocouple responses at each 5.3 dry 278.7 129 1.42
depth were as close as those shown in Fig. 4. Evidently 6! dry 255.6 1.39 1.34
) ) ; i 6.2 wet 255.3 183 1.73
the assumption of a homogeneous solid was reasonable
. . . X 6.3 dry 260.0 1.60 1.50
in connection with the heat transfer.
[ T oy

e xm0Mem—  emmTEE T 133%
{31
m L
b4
& 1332
B =
g s
s £
§ 20 1% 3
E 3
&
25 {32
______________________________ 34
w0 " x+3.18cm
0 10 i % ] 02

Time, s

F1G. 4. Mcasured temperature at the calorimeter surface and various depths of the laboratory specimen (solid and dashed
lines refer to first and second thermocouple sets).

Bl
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Another comparison is suggested by the average
values given in the first two rows in Table 2, where
thermal diffusivity results for the dry specimens at 255
and 311 K are presented. These x values were obtained
using least squares, with x assumed linear in tempera-
ture. The data used came from Table 1. At 255K the
Laplace method is 3.2%; higher than the nonlinear
estimation method: at 311 K it is 2.4° lower.

Table 2. Summary of results for dry asphaltic pavement.
wearing and binding courses

Thermal

diffusivity x 10°,
(m?)
Source of Method of xat255K  xat3llK
data analysis (0°F)" (100°F)
Laboratory  Nonlinear est. 1.44 1.15
Laboratory  Laplace trans. 1.48 1.12
Field Nonlinear est. 1.51 1.28
Field Laplace trans. 1.56 1.20

It is significant that results of the two methods agree
so closely. The nonlinear estimation method provides
a means of checking the model because differences of
the calculated and measured values of temperature can
be investigated for systematic deviations from test to
test. The presence of such systematic effects would
indicate an inadequacy in the model due to the presence
of moisture, nonhomogeneity, etc. None was noted and
thus the simple heat-conduction model given by (1)
appears to be adequate for the conditions tested.

1.2. Field data

In sity temperature measurements made by other
investigators were also analyzed. One set of data for
18 cm thick asphaltic pavement, came from Gratiot
County, Michigan [8], and another sct of data came
from Bishop Airport, Flint, Michigan, [9] where the
pavement is 48 cm thick. Figure S depicts some typical
results for the airport location on a sunny day. Tem-
perature histories are shown as deep as 107¢m in the
underlying soil.

A. KAVIANIPOUR and J. V. Brck

In analyzing data such as that shown in Fig. 3, the
initial time should be assumed to be when the tem-
perature is relatively uniform. vet is followed by rapid
changes in temperature. These conditions are satisfied
at about 8.00 a.m. Because the temperature distribu-
tion is not uniform at any time. however, a correction
for this condition should be applied [3].

Values of the thermal diffusivity calculated for data
from the two locations are shown in Fig. 6. Data were
used only for days having no precipitation. Moreover.
only data corresponding to the upper pavement levels
(t.e. the wearing and binding courses) are included. The
two methods of analysis (nonlinear estimation and

femperature, F

0 10 20 30 40 5 66 € 8 %N W
175 — T - - 0.07
PR .. nonlinear estimation
15 > \ . fielddatar  {0.06

08.

Laplace trans- 4
form method >
{field data)

o nonlinear estimation
o Laplace transtorm method ~,0.02

Thermal diffusivity x 106‘ r\zls

. ‘ .
% 70 2 A W 3"0—‘|1 0

Temperature, K

FiG. 6. Calculated thermal diffusivity of asphaltic concrete
from field data using two methods.

Laplace transform) werc used. Least squares lines
through the data are shown, along with a dashed line
which denoted the laboratory data analyzed using
nonlinear estimation. These lines are described in
Table 2 by the values at 255 and 311 K. There are
some differences in the x values due to the method of
the calculation and the source of the data. The field
data, for example. is as much as 8%, larger than the
laboratory data. (This could be due to the presence of
moisture or the effects of aging.) The differences in the
average values displayed in Table 2 for a given tem-
perature are quite small, however, compared to the
range of the individual x values given in Table 1 or
in Fig. 6. For example, in Table 2 at 255K there is

2

|
<110

Temperature, °F

AM
Time,

h

FiG. 5. Full-depth asphaltic pavement temperature during a sunny summer day.
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about a + 16%; variation near 265 K. Hence, from these
variations and also from an inspection of Fig. 6, any
set of values given in a row in Table 2 might be
used. Since the laboratory data are more consistent
than the field data and since the nonlinear estimation
values should be more accurate, the recommended «
values are those given by the dashed line in Fig. 6,
which is described by the first row of Table 2. For
convenience, these values are repeated in the recom-
mended values in Table 3.

Table 3. Recommended thermal properties for dry
asphaltic pavement

Temperature

255K 311K

(0°F) (100°F)
2, m?s 144 x 10 ¢ 1.15 x10°¢
a, ft?/h 0.056 0.045
k. W/m-K 2.88 2.28
k, Btu/hft-F 1.66 1.31
pcp J/m*-K 2.00 x 10° 1.97 x 10®
pcp, Buyft® - F 29.8 294

The field data were also analyzed to obtain average
thermal diffusivity values representing all the courses,
i.e. wearing, binding, and base. On the average, the
values were only about 3% less than the corresponding
values for just the upper two courses. This is a
negligible difference.

In both the field and laboratory data the “wet”
pavement gave consistently higher values. For the
laboratory data both tests gave close to 20% increase,
while the field data had about 159 increase. Based on
the limited data at hand, it seems that a 20%, increase
over the dry values is indicated. It is felt that this
increase is mainly a result of filling the voids in the
pavement, thereby reducing the resistance to heat flow.
Since the wearing course, in particular, is well-
compacted, the migration of moisture would be slow
and thus would not be the dominant mode for the
increase in heat transfer. The increase is probably due
to greater conduction resulting from water rather than
air being in the voids.

8. RECOMMENDED VALUES FOR DRY
ASPHALTIC PAVEMENT

Based on the results discussed above, some recom-
mended values of thermal diffusivity, thermal conduc-
tivity, and a density- specific heat product are given in
Table 3. These values are for the wearing and binding
courses of dry asphaltic pavement. The recommended
values of x and k are within +20% of most of the
data. The pc, product agrees to +8%; of all the data.
These results are appropriate for the materials investi-
gated, but due to the variability of the natural com-
ponents different values might be found for other cases.
Hence a rapid method for the measurement of proper-
ties may be needed.

It is important to point out that the values of a
and k are considerably higher (by a factor of almost
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two) than those used by some other investigators. If
the low values are used, calculations of frost depth will
indicate considerably less penetration than is actually
present, if the true property values are actually the
larger values contained herein.

9. COMPARISON WITH LITERATURE VALUES

There is relatively good agreement in the literature
on the specific heat and density of asphaltic pavement.
The values used in [10, 11] are ¢, =921J/kg-K and
p = 2242kg/m>, which has a pc, product of 2.07 x
108 J/m? - K. Thisis only 5% less than the 311 K (100°F)
value given in Table 3.

The reported thermal conductivity values are con-
siderably more variable than p and c,. In [10,11] a
value of thermal conductivity of 1.2 W/m K was used.
This was primarily intended to be a typical value valid
for application of hot-mix layers starting at about
422K and then cooling to 353K. Though the value
for k given in Table 3 is 228 W/m-K at 311K, it
decreases to 1.2 at 408K (if linear extrapolation is
permitted). Many other references could be cited, in-
cluding Aldrich [9], who used a value of 1.5W/m-K;
Saal [12], who gave 2.23W/m-K; and O’Blenis [13],
whose values varied from 0.85 to 2.32W/m-K.

Given the above values of thermal conductivity and
pc,, the thermal diffusivity can be calculated and con-
siderable variation can again be expected. Corlew and
Dickson [10, 11] used a value for @ of 5.86 x 10~ " m?/s,
which is about half of that recommended herein for
311 K. They also show reasonable agreement between
some experimental temperature measurements and cal-
culated temperatures using this value. In [10], most of
the comparisons show temperatures above 339K.
Using the Laplace transform with their data also
corroborates their a value.

Consideration of the components of asphaltic pave-
ment suggests that the variation in the above values
may not be unreasonable. For example, one possible
type of rock to be used in the aggregate is limestone;
in units of W/m-K the thermal conductivity is
reported to be 2.1 at 273K [14], 0.7 at 294K [15],
and 1.2 at 372K [16]. The corresponding values for
the first two references of the thermal diffusivity are
44 x 1077 and 8.3 x 107" m?/s. The thermal conduc-
tivity of granite, another possible component of the
aggregate, is given by 2.8 at 273K in [14], between
1.7 and 4.0 in [17] where no temperature is given, and
between 3.1 and 4.2 by Gebhart [16] (units of
W/m-K are used in each case). It is realistic to assume
that the disparate values cited are, to a large degree,
due to the variability of the materials themselves.

Literature values for the asphalt’s conductivity also
vary from 0.16 to 0.76 W/m-K [12]. The latter value
is 20%, larger than that of water at 311 K.

10. SUMMARY AND CONCLUSIONS

A new method for measuring thermal properties is
derived and illustrated through the use of analytical
and experimental data. The method is straightforward,
uses a minimum number of assumptions, is applicable
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to semi-infinite solids, and can be applied to in situ
data. Both the thermal conductivity and the volumetric
specific heat can be found if the Laplace transform of
the surface heat fiux can be evaluated.

New thermal property values for asphaltic pavement
are given. Three different sets of data were analyzed
two from in situ data in Michigan and one from
laboratory data  and recommended thermal property
values for asphaltic pavement are given based on these
data. Other literature values exist for comparable
values of thermal conductivity and thermal diffusivity.
although most literature values tend to be lower. It is
suggested that the scatter in the literature values may
be due in part to the variable composition of the
materials, as well as to the variations in natural
materials themselves.
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APPENDIX
Verification of the Independence of Equation (9) of the s Value
This Appendix is given because it is not obvious that (9)
1s independent of the s value chosen. For an arbitrary tem-
perature history at the surface of a homogeneous. constant
property semi-infinite body. the temperature rise at a point
x is given by Duhamel’s Theorem [18] as
CHlx.1—2)

ol

A
T = | Tith d; (A1)
w0
where To(1) is the given surface temperature and ¢(x. 1) is
the temperature response at x due to a unit step surface
temperature rise.
Taking the Laplace transform of (A.1} gives

L[Tx. 0] = L(ToL[Cplx, 1):¢1]. {A.2)

The derivative ¢¢;¢r is the derivative of (14) with Ty set
equal to unity; the result is

2

cdix.r) _ X ©oxt

= yexpl = (A3)
ct l(47raz1)‘-'L p(\ 4xt )
which has the Laplace transform of

L{églx. 0):¢1] = exp[ — x(s.2)' *] 1A.4)

(see p. 446 of {18]). Then cvaluating the denominator of (9)
gives
; Ty e Cvfeemt 2132
02 L[Tix)] _ {In Ly lu)cxp_[_‘ ”,\l.s::x] ]( (AS)
L(Ty) LUT5) |

=[=xtsn) )= X (A.6)

which when introduced into (9) yiclds x. Notice that the
s and x? values cancel in (9).

ESTIMATION DES PROPRIETES THERMIQUES PAR LA TRANSFORMATION DE
LAPLACE, AVEC APPLICATION AUX REVETEMENTS ASPHALTIQUES

Résume-- L’article propose une nouvelle méthode de mesure des propriétés thermiques de solides soumis
a des conditions de chauffage arbitraires. La méthode s’appuie sur la transformation de Laplace et peut
étre utilisée pour différentes géométries, mais le cas étudié ici est celui d’un solide semi-infini et homogéne.
Les calculs sont suffisamment simples pour étre faits sur des calculatrices de poche et la méthode peut étre
utiliséc pour déterminer la diffusivité thermique quand les températures sont mesurées et aussi a la fois la
conductivité thermique et la chaleur spécifique quand, en plus, est connu le flux thermique a la surface.
Le méthode est appliquéc a la détermination des propriétés thermiques des revétements asphaltiques
par la mesure de température dans les conditions réelles d'utilisation. Contrairement a d'autres méthodes.
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des solutions exactes basées sur des conditions de chauffage périodiques et établies ne sont pas nécessaires.

On analyse des mesures de températures transitoires dans un revétement asphaltique pour deux situations

extérieures en Michigan et les propriétés thermiques calculées sont comparées a celles trouvées par
estimation non linéaire.

DIE ABSCHATZUNG THERMISCHER STOFFEIGENSCHAFTEN
UNTER VERWENDUNG DER LAPLACE-TRANSFORMATION MIT
SPEZIELLER ANWENDUNG AUF ASPHALT-STRASSENBELAGE

Zusammenfassung - Es wird eine neue Methode zur Messung der thermischen Stoffeigenschaften von
Festkorpern, welche beliebigen Beheizungsbedingungen unterworfen sind, vorgeschlagen. Die Methode
verwendet die Laplace-Transformation und kann auf viele Geometrien angewandt werden; der wichtigste,
hier diskutierte Fall ist der des halbunendlichen, homogenen Korpers. Die Berechnungen sind relativ
einfach mit modernen Taschencomputern durchzufiihren. Die Methode kann zur Bestimmung der
Temperaturleitzahl verwendet werden, wenn nur Temperaturen gemessen werden: ist zusdtzlich der
Oberflichenwarmestrom bekannt. dann konnen auch die Warmeleitfdhigkeit und die isochore spezifische
Wairmekapazitat bestimmt werden. Unter Verwendung von Temperaturmessungen unter tatsichlichen
Betriebsbedingungen wird die Methode zur Messung thermischer Stoffwerte von Asphalt-StraBenbeldgen
angewandt. Im Gegensatz zu anderen Methoden sind dabei keine exakten Ldsungen aufgrund stationarer,
periodischer Heizbedingungen erforderlich. Instationdre Temperaturmessungen in Asphalt-StraBen-
beldgen in zwei Orten in Michigan werden ausgewertet: die berechneten thermischen Stoffwerte werden
mit denjenigen verglichen, die mit Hilfe nichtlincarer Abschédtzungsverfahren ermittelt worden sind.

NCIOJIB30OBAHUE TTPEOBPA3OBAHUA JIAIUJIACA J1JIA OLIEHKHU
TEIMJIO®UIMYECKUX CBOWCTB ACOAJIBTA

Amnoramms — I1peanoxeH HOBbIA METON H3MEPEHHA TETUIOBBIX CBOMCTB TBEPALIX T/, HE 3aBHCALLMH
OT YC/IOBMH Harpesa HCClenyeMoro Teqa. MeToauka onpeneneHMst 3THX CBOHCTB 6a3Hpyercs Ha
HCMONb30BaHMKM NpecGpa3oBaHHOIO 1o Jlanacy ypaBHeHHs TENIONPOBOAHOCTH LIS NOJMy6eckoHed-
HOTO OZHOPOAHOro Tena. PacueTHas ¢opmysa OTHOCHTENBHO NPOCTA M pacHeT CBOHCTB MOXET
6bITb NpoBeNeH PYYHBIMH BbIYHC/IHTENBHBIMH CPEACTBAMH 3TOT METOA MOXET GbITh HCMO/L30BAH
Ans onpeneneHHs TeMmnepaTypONpPOBORHOCTH, €C/IH M3BECTHA TEMMEPATypa, M AMS ONpelecHHs
TEIUVIOMPOBOAHOCTH H TEMJOEMKOCTH NMpPH MOCTOAHHOM 00BEME, €C/IH M3BECTEH TElIOBOR NMOTOK.
MeTton npHMeHSETCA I H3MEPEHHS TEMLIOPUIHYECKHX CBOHCTB achaibTa B 3aBHCHMOCTH OT TeM-
nepartypsl. B OT/IHYME OT APYrHX METONOB B NAHHOM ciy4ae He TpebyeTcs HMETh TOYHbIE PELIeHHS
YPaBHEHHA TEIUIONPOBOAHOCTH MPH YCJIOBHAX CTALMOBAPHOTO NMEPHOOMYECKOTO HArpeBa. AHaNH3H-
pytorcs cBoRcTBa achanbTOB NBYX PaHOHOB MHYMraHa, MOyYEeHHbIE HECTALIHOHAPHBIM METOIOM
pacyeTHbIC 3HAYEHHSA STHX CBOHCTB CPaBHHBAIOTCA C JAHHBIMH, MTOJIyYEHHBIMH Ha OCHOBE HETHHENHON
METOOMKH.
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